Efficient Computing Lab
Theses
-
Συλλογή και ανάλυση δεδομένων επίδοσης από Raspberry Pi και Jetson Nano κατά τη διάρκεια εκτέλεσης αλγορίθμων νευρωνικών δικτύων.
-
Generate Adversarial Examples with GANs
-
Use Generative Adversarial Networks (GANs) to protect classifiers against adversarial attacks.
-
Generate Adversarial Examples with Diffusion Models
-
The use of Diffusion Models for Adversarial Purification
-
Comparative study of the convergence speed Vs resilience tradeoff in model aggregation mechanisms in Federated Learning
-
Caching and Replication Mechanisms for the Model Context Protocol (MCP)
-
Design and Implementation of an Event-Driven Extension for the Model Context Protocol (MCP)
-
Coordinated Execution of Multiple Early-Exit AI Models in Resource-Constrained Edge-Cloud Environments
-
Συλλογή και ανάλυση δεδομένων επίδοσης από Raspberry Pi και Jetson Nano κατά τη διάρκεια εκτέλεσης αλγορίθμων νευρωνικών δικτύων.
-
Generate Adversarial Examples with GANs
-
Use Generative Adversarial Networks (GANs) to protect classifiers against adversarial attacks.
-
Generate Adversarial Examples with Diffusion Models
-
The use of Diffusion Models for Adversarial Purification
-
Comparative study of the convergence speed Vs resilience tradeoff in model aggregation mechanisms in Federated Learning
-
Caching and Replication Mechanisms for the Model Context Protocol (MCP)
-
Design and Implementation of an Event-Driven Extension for the Model Context Protocol (MCP)
-
Coordinated Execution of Multiple Early-Exit AI Models in Resource-Constrained Edge-Cloud Environments